
swiflow Documentation
Release 0.3.0

Micah Johnson

Mar 23, 2020

Contents:

1 Welcome to swiflow 1
1.1 Usage . 1
1.2 Setting up a new project . 1
1.3 Credits . 2

2 Installation 3
2.1 Stable release . 3
2.2 From sources . 3

3 Usage 5

4 Catchment Models 7
4.1 Comola Catchment Model . 7

5 Routing Methods 9
5.1 Direct . 9
5.2 Muskingum-Cunge (Under Development) . 9

6 Calibration Theory 11
6.1 Max Infiltration Theory . 11
6.2 Residence Time Theory . 12
6.3 Fair Warning . 12

7 Configuration File Reference 13
7.1 setup . 13
7.2 model . 14
7.3 output . 15
7.4 system . 16
7.5 analysis . 16

8 Contributing 17
8.1 Types of Contributions . 17
8.2 Adding Models . 18
8.3 Get Started! . 18
8.4 Pull Request Guidelines . 19
8.5 Tips . 19
8.6 Deploying . 19

i

9 Credits 21
9.1 Development Lead . 21
9.2 Contributors . 21

10 History 23
10.1 0.1.0 (2019-05-23) . 23
10.2 0.2.0 (2019-06-05) . 23
10.3 0.3.0 (2019-07-17) . 23

11 Indices and tables 25

ii

CHAPTER 1

Welcome to swiflow

WARNING: Swiflow is under active development on its master branch.

A python package for modeling streamflow using surface water input from iSnobal

• Free software: MIT license

• Documentation: https://swiflow.readthedocs.io

1.1 Usage

Once installed, swiflow is ran as simply as:

swiflow config.ini

1.2 Setting up a new project

To setup a project you must have a vector for each subbasin representing water landing on the ground surface. In most
cases this project uses aggregated Surface Water Input (SWI) from iSnobal typically generated using AWSM .

1. To setup a basin consider using delineate with the –streamflow flag. THis will create all the static files you need
for your basin.

2. SWI is usually outputted as an image. To aggregate SWI to a vector, SWIFlow has a function to manage this
which is used like the code below. This will produce a CSV containing the vectorized surface water input (SWI)
by looping through the watersheds and the em.nc file.

1

https://pypi.python.org/pypi/swiflow
https://swiflow.readthedocs.io/en/latest/?badge=latest
https://travis-ci.org/USDA-ARS-NWRC/swiflow
https://swiflow.readthedocs.io
https://github.com/USDA-ARS-NWRC/awsm
https://github.com/USDA-ARS-NWRC/basin_setup

swiflow Documentation, Release 0.3.0

prep_swi em.nc watersheds.shp SWI

3. Setup a config.ini that looks similar to the one in ./examples/catchment_csv/config.ini which should point to the
new files you just created. For more info on the config simply use inicheck:

inicheck -m swiflow --details <section>

4. Once you have started a configuration file, attempt to determine the max_infiltration setting in your config file
by running the following command over a whole water year. To do this you will also need provide a path to
observed_streamflow in the config file.

solve_rmax config.ini

This will print out the estimated max_infiltration.

5. Once a max_infiltration value is determined. Use the calibrate_swi tool to estimate the upper_residence_time
and lower_residence_time by running the following command over a whole water year and setting your timestep
to 4 hours to speed it up:

calibrate_swi config.ini

The calibration process is still experimental so you may need to adjust values still. Attempt to use a
value set that was listed in the print out from the calibration scheme will help narrow it down.

6. Once you have your parameters set, set the dates of interest and run:

swiflow config.ini

1.3 Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

2 Chapter 1. Welcome to swiflow

https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter-pypackage

CHAPTER 2

Installation

2.1 Stable release

To install swiflow, run this command in your terminal:

$ pip install swiflow

This is the preferred method to install swiflow, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.2 From sources

The sources for swiflow can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/USDA-ARS-NWRC/swiflow

Or download the tarball:

$ curl -OL https://github.com/USDA-ARS-NWRC/swiflow/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

3

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/USDA-ARS-NWRC/swiflow
https://github.com/USDA-ARS-NWRC/swiflow/tarball/master

swiflow Documentation, Release 0.3.0

4 Chapter 2. Installation

CHAPTER 3

Usage

To use swiflow simply create a config file point to all the necessary files and

swiflow config.ini

5

swiflow Documentation, Release 0.3.0

6 Chapter 3. Usage

CHAPTER 4

Catchment Models

Catchment models describe how the inputted water leaves the subcatchment. Currently only one is implemented:

• Comola

4.1 Comola Catchment Model

SWIFlow is a two layer streamflow model. There is an upper storage and a lower storage that interact. The model uses
three state variables to model streamflow. The are storage of a layer, infiltration rate into the layer, and the flowrate
from the layer.

This model was introduced by Comola et. al 2015 and implemented the same in swiflow as it was originally described.

4.1.1 Equations

Below are the definitions used in the model equations:

• Q - Flowrate in 𝑚3

𝑠

• S - Storage in units of meters of water height over subbasin area.

• I - Infiltration rate in units of 𝑚
𝑠

• 𝜏 - Residence time, (calibrated term) in units of seconds

• 𝑅𝑚𝑎𝑥 - Maximum infiltration rate to the lower layer (calibrated)

• A - Surface area of either the subbasin or the total watershed in 𝑚2.

The model is described by the following equations:

𝐼𝑟𝑒𝑠𝐿 = 𝑚𝑖𝑛(𝐼𝑠𝑤𝑖, 𝑅𝑚𝑎𝑥)

𝐼𝑟𝑒𝑠𝑈 = 𝐼𝑠𝑤𝑖 − 𝐼𝑟𝑒𝑠𝐿

7

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2014WR016228

swiflow Documentation, Release 0.3.0

For change in storage in the upper and lower layer:

𝑑𝑆𝑟𝑒𝑠𝐿,𝑈

𝑑𝑡
= 𝐼𝑟𝑒𝑠𝐿,𝑈

− 𝑄

𝐴𝑠𝑢𝑏𝑏𝑎𝑠𝑖𝑛

The Residence time for each layer for each subbasin is:

𝜏 =

(︂
𝐴𝑠𝑢𝑏𝑏𝑎𝑠𝑖𝑛

𝐴𝑡𝑜𝑡𝑎𝑙

)︂ 1
3

𝜏

The flowrate out of a layer is defined by:

𝑄𝑟𝑒𝑠𝐿,𝑈
= 𝐴𝑠𝑢𝑏𝑏𝑎𝑠𝑖𝑛

𝑆𝑟𝑒𝑠𝐿,𝑈

𝜏𝑟𝑒𝑠𝐿,𝑈

𝑄𝑠𝑢𝑏𝑏𝑎𝑠𝑖𝑛 = 𝑄𝑟𝑒𝑠𝑈 + 𝑄𝑟𝑒𝑠𝐿

4.1.2 Discretization

Spatially the model is split up by subwatersheds or sometimes called HRUs prior to running SWIFlow. This can be
performed by basin_setup . Temporally, the change in storage equation is split up explicitly which is implemented as
follows:

𝑆𝑟𝑒𝑠𝑡+1
=

(︂
𝐼𝑟𝑒𝑠𝑡 −

𝑄𝑡

𝐴𝑠𝑢𝑏𝑏𝑎𝑠𝑖𝑛

)︂
∆𝑡 + 𝑆𝑟𝑒𝑠𝑡

4.1.3 Algorithm

At the beginning of the run, SWIFlow the initial conditions for 𝑄𝑟𝑒𝑠𝐿,𝑈
and 𝑆𝑟𝑒𝑠𝐿,𝑈

, S are all zero. SWIFlow computes
the state variables in the following order for each timestep.

1. Calculate lower then upper infiltration rates (𝐼𝑟𝑒𝑠𝐿,𝑈
)

2. Calculate upper and lower flowrates (𝑄𝑟𝑒𝑠𝐿,𝑈
)

3. Calculate future storage using discretized change in storage equation (𝑆𝑟𝑒𝑠𝑡+1
)

8 Chapter 4. Catchment Models

https://github.com/USDA-ARS-NWRC/basin_setup

CHAPTER 5

Routing Methods

SWIFlow has two routing methods developed in it.

• Direct

• Muskingum-Cunge (1969)

5.1 Direct

Direct routing assumes that a bulk of the time water is spent on the hill slope. This is only valid for small catchments.

5.2 Muskingum-Cunge (Under Development)

Description of technique first provided by Cunge 1969. Numerical discretization taken from Gallice et. al 2016 and
re-transcribed below.

Variables

• n - Time index [unitless]

• i - Discretize stream reach index [unitless]

• t - Time [Seconds]

• Q - Flowrate [M^3/S]

• l_i - Stream reach discretized length for stream i [m]

• w - Stream segment width [m]

• S_0 - Local bed slope []

• C_r - Wave celerity [m/s]

• Q_r - Representative discharge [m^3/s]

9

https://www.tandfonline.com/doi/pdf/10.1080/00221686909500264
https://www.geosci-model-dev.net/9/4491/2016/gmd-9-4491-2016.pdf

swiflow Documentation, Release 0.3.0

• n_m - Mannings coefficient (0.03 - 0.10 for small natural streams) [s/m^-1/3]

Assumptions

• C_r is derived from Q_r assuming rectangular channel cross section

𝑄𝑛+1
𝑖 = 𝐶1𝑄

𝑛
𝑖−1 + 𝐶2𝑄

𝑛+1
𝑖−1 + 𝐶3𝑄

𝑛
𝑖

Where

𝐶1 =
𝑘𝑖𝑥𝑖 + 0.5∆𝑡

𝑘𝑖(1 − 𝑥𝑖) + 0.5∆𝑡

𝐶2 =
−𝑘𝑖𝑥𝑖 + 0.5∆𝑡

𝑘𝑖(1 − 𝑥𝑖) + 0.5∆𝑡

𝐶3 =
𝑘𝑖(1 − 𝑥𝑖) − 0.5∆𝑡

𝑘𝑖(1 − 𝑥𝑖) + 0.5∆𝑡

Where

𝑘𝑖 =
𝑙𝑖
𝑐𝑟

𝑐𝑟 =
5

3

(︂
𝑆0

𝑛2
𝑚

)︂ 3
10
(︂
𝑄𝑟

𝑤

)︂ 2
5

𝑥𝑖 = 0.5 *𝑚𝑖𝑛

(︂
1, 1 − 𝑄𝑟

𝑐𝑟𝑤𝑆0𝑙𝑖

)︂
𝑄𝑟 =

𝑄𝑛
𝑖−1 + 𝑄𝑛+1

𝑖−1 + 𝑄𝑛
𝑖

3

ℎ𝑛+1
𝑖 =

(︂
𝑛𝑚𝑄𝑛+1

𝑖

𝑤𝑆0

)︂ 3
5

Numerical stability guidance provided by the following for lumped systems as opposed to gridded discretized reaches:

2𝑘𝑖𝑥𝑖 <= ∆𝑡 <= 2𝑘𝑖(1 − 𝑥𝑖)

10 Chapter 5. Routing Methods

CHAPTER 6

Calibration Theory

In the SWIFlow configuration file, max_infiltration (𝑅𝑚𝑎𝑥), lower_residence_time (𝜏𝑙), and upper_residence_time
(𝜏𝑢) are all model Parameters to be set by the user. These values unfortunately are specific to a basin and thus need
calibration.

Most of the following theory depends on the ability to separate the flow into two components of the observed flowrate.
The current method utilizes an approach described by Eckhardt 2005 in a paper titled “How to construct recursive
digital filters for baseflow separation to be used for calibration.”

6.1 Max Infiltration Theory

Solving for 𝑅𝑚𝑎𝑥 means that the scope of the following derivation should only be performed on the lower layer
equations. The storage equation is simplified by assuming the change in storage is zero on an annual basis. Using the
base component of the separate flow from Eckhardt’s method our storage and infiltration equation becomes:

0 =

𝑇∑︁
𝑡=0

𝐼𝑟𝑒𝑠𝐿 −
𝑇∑︁

𝑡=0

𝑄𝐿

𝐴𝑠𝑢𝑏𝑏𝑎𝑠𝑖𝑛

𝐼𝑟𝑒𝑠𝐿 = 𝑚𝑖𝑛(𝐼𝑠𝑤𝑖, 𝑅𝑚𝑎𝑥)

Substituting the infiltration equation into the storage equation, it then becomes:

0 =

𝑇∑︁
𝑡=0

𝑚𝑖𝑛(𝐼𝑠𝑤𝑖, 𝑅𝑚𝑎𝑥) −
𝑇∑︁

𝑡=0

𝑄𝐿

𝐴𝑠𝑢𝑏𝑏𝑎𝑠𝑖𝑛

11

https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.5675

swiflow Documentation, Release 0.3.0

𝑅𝑚𝑎𝑥 is a constant value so using the above equation allows us to iteratively estimate the value. This is performed by
bisection where the solution is driving the residual to 0 in the following manner where A is always less than B:

𝐶 =
𝐴 + 𝐵

2

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =

𝑇∑︁
𝑡=0

𝑚𝑖𝑛(𝐼𝑠𝑤𝑖, 𝐶) −
𝑇∑︁

𝑡=0

𝑄𝐿

𝐴𝑠𝑢𝑏𝑏𝑎𝑠𝑖𝑛

𝐵 =

{︂𝐶,𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙>0

𝐵

𝐴 =

{︂𝐶,𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙<0

𝐴

The steps to solve for max infiltration:

1. Separate the flow into direct and base flow using Eckhardt’s method

2. Calculate the cumulative volumes from the Inputted SWI and the observed flowrate

3. Calculate the derivative of the difference between SWI and Observed volumes

4. Calculate the mean of this timeseries to estimate the infiltration value

TIP: The configuration file sets the time period for analysis. Use a time period of most importance to weight the
average towards a high volume period

6.2 Residence Time Theory

After estimating 𝑅𝑚𝑎𝑥, the next step is to solve for residence times for the upper and lower layers (𝜏𝐿 and 𝜏𝑈). This
is performed in a similar fashion as in max infiltration.

The steps to estimate the upper and low residence times

1. Separate the flow into direct and base flow using Eckhardt’s method

2. Insert the separated components into the model’s states 𝑄𝑏𝑎𝑠𝑒 → 𝑄𝐿 and 𝑄𝑑𝑖𝑟𝑒𝑐𝑡 → 𝑄𝑈

3. Run the model, skipping solving for 𝑄

4. Solve for 𝜏𝐿 and 𝜏𝑈

5. Use the min/max to bound an iterative solution via bisection. e.g. 𝐴 = 𝑚𝑖𝑛(𝜏𝐿) 𝐵 = 𝑚𝑎𝑥(𝜏𝐿)

6. Assume 𝜏𝑈 is constant, and run model as in step #3 with 𝜏𝐶 = 𝐴+𝐵
2

7. Rerun the model as in step #3.

8. Iterate on the solution picking the new bounds as described above.

9. Repeat Steps 1-8 leaving the new 𝜏𝐿 constant and iterate on 𝜏𝑈

6.3 Fair Warning

The calibration process is in still in development. Estimating for 𝑅𝑚𝑎𝑥, 𝜏𝐿 and 𝜏𝑈 is highly interconnected and thus in
these early stages of development some user intuition made need to be applied and even iterated upon. E.g. Calibrate,
adjust, calibrate.

12 Chapter 6. Calibration Theory

CHAPTER 7

Configuration File Reference

The SWIFlow configuration file is described in detail below. This information is all based on the CoreConfig file
stored under the top level of the package.

For configuration file syntax information please visit http://inicheck.readthedocs.io/en/latest/

7.1 setup

basin_name
Name of the basin to better tag data

Default: None
Type: string

end
Datetime for where to end modeling runoff

Default: None
Type: datetimeorderedpair

start
Datetime for where to start modeling runoff

Default: None
Type: datetimeorderedpair

stream_network_shp

13

http://inicheck.readthedocs.io/en/latest/

swiflow Documentation, Release 0.3.0

ShapeFile describing the stream reach and their association to the subbasin. File is produced by basin_setup
during delineation.

Default: None
Type: criticalfilename

swi_data
Time series of swi data

Default: None
Type: criticalfilename

watersheds_shp
ShapeFile defining the subbasins. File is produced by basin_setup during delineation.

Default: None
Type: criticalfilename

7.2 model

catchment_model_type
Theoretical streamflow model

Default: comola
Type: string
Options: comola

estimated_efficiency
Ratio of SWI allowed into the system. Mostly implemented for use with the direct routing

Default: 1.0
Type: float

lower_residence_time
Time in days a unit of water will stay in a subbasins lower layer

Default: 100
Type: float

mannings_coefficient
Mannings coefficient to be used when routing_model_type is MuskingumCunge (n_m in docs)

Default: 0.03
Type: float

14 Chapter 7. Configuration File Reference

swiflow Documentation, Release 0.3.0

max_infiltration
Max infiltration in mm/day rate to the the lower layer in the Comola model

Default: 5
Type: float

routing_model_type
Model to use for routing available water from subcatchments to the basin outlet

Default: direct
Type: string
Options: direct muskingumcunge

stream_width
An assumed stream width for when the routing_model_type is MuskingumCunge in meters (w in docs)

Default: 1
Type: float

timestep_hours
Timestep to march through time in integer hours

Default: 24
Type: float

upper_residence_time
Time in days a unit of water will stay in a subbasins upper layer

Default: 10
Type: float

7.3 output

output_location
directory location to output the variables

Default: output
Type: directory

7.3. output 15

swiflow Documentation, Release 0.3.0

7.4 system

log_level
logging level to use when running a model

Default: debug
Type: string
Options: info debug

log_to_file
Output the log info to log.txt

Default: false
Type: bool

7.5 analysis

observed_name
Name of the columnb containin the actual values of the measured streamflow

Default: qcms
Type: string

observed_streamflow
filename containing a CSV of observed streamflow

Default: None
Type: criticalfilename

show_comparison
Show the plot of the observed and modeled timeseries overlaid

Default: False
Type: bool

16 Chapter 7. Configuration File Reference

CHAPTER 8

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

8.1 Types of Contributions

8.1.1 Report Bugs

Report bugs at https://github.com/USDA-ARS-NWRC/swiflow/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

8.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

8.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

17

https://github.com/USDA-ARS-NWRC/swiflow/issues

swiflow Documentation, Release 0.3.0

8.2 Adding Models

Adding a catchment model or adding a routing model to swiflow is as simple as

New models can easily be added to swiflow by following the steps below:

1. Create a new class in the swiflow.<relevant module> module with a name containing a keyword

2. Inherit from the Base<Keyword> Class and define the functions in the base class left blank

3. Add your class name (minus the word model) to the options listed under <relevant module>_type 4. Use it.

All new routing models are added to swiflow.routing_models using the keyword Routing in the class name

All new catchment models are added to swiflow.catchment_models using the keyword Model in the class name

8.2.1 Write Documentation

swiflow could always use more documentation, whether as part of the official swiflow docs, in docstrings, or even on
the web in blog posts, articles, and such.

8.2.2 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/USDA-ARS-NWRC/swiflow/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

8.3 Get Started!

Ready to contribute? Here’s how to set up swiflow for local development.

1. Fork the swiflow repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/swiflow.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv swiflow
$ cd swiflow/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

18 Chapter 8. Contributing

https://github.com/USDA-ARS-NWRC/swiflow/issues

swiflow Documentation, Release 0.3.0

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 swiflow tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

8.4 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 3.5 3.6, and 3.7. Check https://travis-ci.org/USDA-ARS-NWRC/
swiflow/pull_requests and make sure that the tests pass for all supported Python versions.

8.5 Tips

To run a subset of tests:

$ python -m unittest tests.test_swiflow

8.6 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY.rst). Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

8.4. Pull Request Guidelines 19

https://travis-ci.org/USDA-ARS-NWRC/swiflow/pull_requests
https://travis-ci.org/USDA-ARS-NWRC/swiflow/pull_requests

swiflow Documentation, Release 0.3.0

20 Chapter 8. Contributing

CHAPTER 9

Credits

9.1 Development Lead

• Ernesto Trujillo @etrujil

• Micah Johnson @micahjohnson150

9.2 Contributors

Want to be the first?

21

https://github.com/etrujil
http://github.com/micahjohnson150

swiflow Documentation, Release 0.3.0

22 Chapter 9. Credits

CHAPTER 10

History

10.1 0.1.0 (2019-05-23)

• First push to Github

10.2 0.2.0 (2019-06-05)

• First working model

10.3 0.3.0 (2019-07-17)

• Added in a calibration method

• Added in a conversion function to convert different inputs

• Added in an analysis and validation function

• Added in SWI aggregation script

23

swiflow Documentation, Release 0.3.0

24 Chapter 10. History

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

25

	Welcome to swiflow
	Usage
	Setting up a new project
	Credits

	Installation
	Stable release
	From sources

	Usage
	Catchment Models
	Comola Catchment Model

	Routing Methods
	Direct
	Muskingum-Cunge (Under Development)

	Calibration Theory
	Max Infiltration Theory
	Residence Time Theory
	Fair Warning

	Configuration File Reference
	setup
	model
	output
	system
	analysis

	Contributing
	Types of Contributions
	Adding Models
	Get Started!
	Pull Request Guidelines
	Tips
	Deploying

	Credits
	Development Lead
	Contributors

	History
	0.1.0 (2019-05-23)
	0.2.0 (2019-06-05)
	0.3.0 (2019-07-17)

	Indices and tables

